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Abstract. Constraints allow programmers and users to state declaratively a relation
that should be maintained, rather than requiring them to write procedures to maintain
the relation themselves. They are thus useful in such applications as programming lan-
guages, user interface toolkits, and simulation packages. In many situations, it is desirable
to be able to state both required and preferential constraints. The required constraints
must hold. Since the other constraints are merely preferences, the system should try to
satisfy them if possible, but no error condition arises if it cannot. A constraint hierar-
chy consists of a set of constraints, each labeled as either required or preferred at some
strength. An arbitrary number of different strengths is allowed. In the discussion of a
theory of constraint hierarchies, we present alternate ways of selecting among competing
possible solutions, and prove a number of propositions about the relations among these
alternatives. We then outline algorithms for satisfying constraint hierarchies, and ways
in which we have used constraint hierarchies in a number of programming languages and
systems.

1. Introduction

A constraint describes a relation that should be satisfied. Examples of
constraints include:

e a constraint that a resistor in a circuit simulation obey Ohm’s Law

e a constraint that two views of the same data remain consistent (for
example, bar graph and pie chart views)

o a default constraint that parts of an object being edited remain fixed,
unless there is some stronger constraint that forces them to change.

Constraints are useful in programming languages, user interface toolkits,
simulation packages, and other systems because they allow users to declare
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that a relation is to be maintained, rather than requiring users to write,
and invoke, procedures to do the maintenance. In general constraints are
multi-directional. For example, a constraint that A + B = C might be
used to find a value for any of A, B, or C'. In general there may be many
interrelated constraints in a given application; it is left up to the system to
sort out how they interact and to keep them all satisfied.

11 The Refinement versus The Perturbation Model

We can roughly classify constraint-based languages and systems as using
one of two approaches: the refinement model or the perturbation model. In
both cases constraints restrict the values that variables may take on. In
the refinement model, variables are initially unconstrained; constraints are
added as the computation unfolds, progressively refining the permissible
values of the variables. This approach is more or less universally adopted
in the logic programming community, for example, in the Constraint Logic
Programming language scheme [11, 40] and in the cc (concurrent constraint )
languages [66, 65].

In contrast, in the perturbation model, at the beginning of an execution
cycle variables have specific values associated with them that satisfy the
constraints. The values of one or more variables are perturbed (usually
by some outside influence, such as an edit request from the user), and
the task of the system is to adjust the values of the variables so that the
constraints are again satisfied. The perturbation model has often been used
in constraint-based applications such as the interactive graphics systems
Sketchpad [75], ThingLab I [3], Magritte [33], and Juno [58], and user
interface construction systems such as Garnet [57, 56]. We can also view
the ubiquitous spreadsheet as using the perturbation model: formulas are
constraints relating the permissible values in cells. Before a user action,
cells have values that satisfy the constraints (formulas). The user edits the
value in a cell, or edits a formula, and the system must change the values
of other cells as needed so that the constraints are again satisfied.

In the perturbation model, there will generally be many ways to update
the current state so that the constraints are again satisfied. As a trivial
example, suppose we have a constraint A + B = (', and edit the value of
B. Should we change just A, change just C', change both A and (', undo
the change to B, or what? At some cost in generality, we can use read-only
annotations to limit this choice. A common special case is to use one-way
constraints, that is, constraints in which all but one of the variables are
declared to be read-only. For the A + B = (' constraint, if A and B are
declared to be read-only, it is clear what to do when B is edited (change
(), at least if there are no circularities in the constraint graph.



CONSTRAINT HIERARCHIES 225

Except for systems that are restricted to non-circular one-way constraints,
a problem with the perturbation model is that it is often unclear which vari-
ables to alter to re-satisfy the constraints. A variety of heuristics were used
in earlier systems (see Section 61). However, none of these methods was en-
tirely satisfactory: sometimes they gave counter-intuitive solutions. Worse,
it was difficult to specify declaratively which solutions were preferred and
to alter these preferences, since the heuristics were buried in the procedural
code of the satisfier.

1.2 Requirements and Preferences

Constraint hierarchies were originally devised to solve the problem of
specifying declaratively what to change when perturbing a constraint sys-
tem [7]. In a constraint hierarchy, the programmer or user can state both re-
quired and preferential constraints (also known as hard and soft constraints).
The required constraints must hold. The system should try to satisfy the
preferential constraints if possible, but no error condition arises if it can’t.
We allow an arbitrary number of levels of preference, each successive level
being more weakly preferred than the previous one.

Thus, in the A+ B = C example, we could also include weak constraints
that A and B remain unchanged, and a weaker constraint that C' remain
the same. Given this hierarchy, if we edit A, the system will change C'
rather than B to re-satisfy the constraints. One use, therefore, of constraint
hierarchies is to take a problem for which the perturbation model is more
natural, and turn it into a more declarative “refinement” problem.

However, constraint hierarchies have numerous other applications as
well—anywhere that we would like to state preferences as well as
requirements—for example, planning, scheduling, or layout. As a simple
example, consider the problem of laying out a table in a document. We
would like the table to fit on a single page while still leaving adequate white
space between rows. This can be represented as the interaction of two con-
straints: a hard constraint that the height of the blank space between lines
be greater than zero, and a soft constraint that the entire table fit on one
page. As another example, suppose we are moving a part of a constrained
geometric figure around on the display using the mouse. While the part
moves, other parts may also need to move to keep all the constraints sat-
isfied. However, if the locations of all parts aren’t determined, we would
prefer that they remain where they were, rather than flailing wildly about.
Further, there may be choices about which parts to move and which to
leave fixed; the user may have preferences in such cases. Again, constraint
hierarchies provide a convenient way of stating these desires.

In the remainder of this paper, we first present a theory of constraint
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hierarchies; this theory is the paper’s primary focus. As part of this pre-
sentation, we discuss a number of alternate ways of selecting among com-
peting possible solutions, and prove several propositions about the relations
among these alternatives. Following this, we outline several algorithms for
satisfying constraint hierarchies, and describe how we have used constraint
hierarchies in a number of programming languages and systems, including
HCLP (a logic programming language scheme), CIP (a hybrid constraint-
imperative language scheme), and ThingLab II (a constraint-based simu-
lation environment). Finally, we discuss some previous and related work
in more detail; we describe in particular how these other systems handle
problems involving defaults and preferences, and show how to classify their
behavior in terms of the constraint hierarchy theory.

2. A Theory of Constraint Hierarchies

In this section we present a theory of constraint hierarchies. In later sec-
tions, we describe some extensions to this basic theory, and then how these
notions have been embedded in a variety of systems and languages, includ-
ing logic programming and object-oriented languages.

21 Definitions

A constraint is a relation over some domain D. The domain D determines
the constraint predicate symbols IIp of the language, so that a constraint
is an expression of the form p(#y,...,t,) where p is an n-ary symbol in Ilp
and each ¢; is a term.

A labeled constraint is a constraint labeled with a strength, written sc,
where sis a strength and ¢ is a constraint. For clarity in writinglabeled con-
straints, we give symbolic names to the different strengths of constraints.
In both the theory and in our implementations of languages and systems
that include constraint hierarchies, we then map each of these names onto
the integers 0...n, where n is the number of non-required levels. Strength
0, with the symbolic name required, is always reserved for required con-
straints.

A constraint hierarchy is a multiset of labeled constraints. Given a con-
straint hierarchy H, Hy denotes the required constraints in H, with their
labels removed. In the same way, we define the sets Hy, Ho,..., H, for
levels 1,2,...,n. We also define Hy = ) for k& > n.

A solution to a constraint hierarchy H is a valuation for the free variables
in H,i.e., a function that maps the free variables in H to elements in the
domain D. We wish to define the set S of all solutions to H. Clearly,
each valuation in S must be such that, after it is applied, all the required
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constraints hold. In addition, we desire each valuation in § to be such that
it satisfies the non-required constraints as well as possible, respecting their
relative strengths. To formalize this desire, we first define the set Sy of
valuations such that all the Hy constraints hold. Then, using Sy, we define
the desired set S by eliminating all potential valuations that are worse than
some other potential valuation using the comparator predicate better. (In
the definition, ¢ denotes the boolean result of applying the valuation € to
¢, and we say that “cf holds” if ¢ = true.)

So = {6 |Vce Hych holds}
S = {0]0¢€ SoAVo € Sy better(o,6,H)}

There are many plausible candidates for comparators. We insist that
better be irreflexive and transitive:

VOVH —better(6,0, H)
V8,0, 7VH better(0,o0, H) A better(o, 7, H) — better(8,r, H)

However, in general, better will not provide a total ordering—there may
exist # and o such that 8 is not better than ¢ and o is not better than 6.
We also insist that better respect the hierarchy—if there is some valuation
in S that completely satisfies all the constraints through level k, then all
valuations in S must satisfy all the constraints through level &:

if 30 € So A 3k > 0 such that
Viel...kVpe H; pf holds
then Vo € SViel...kVp e H; po holds

We now define several different comparators. In the definitions, we will
need an error function e(cf) that returns a non-negative real number indi-
cating how nearly constraint c¢ is satisfied for a valuation 8. This function
must have the property that e(cf) = 0 if and only if ¢f holds. For any do-
main D, we can use the trivial error function that returns 0 if the constraint
is satisfied and 1 if it is not. A comparator that uses this error function is
a predicate comparator. For a domain that is a metric space, we can use
its metric in computing the error instead of the trivial error function. (For
example, the error for X = Y would be the distance between X and Y.)
Such a comparator is a metric comparator.

The first of the comparators, locally-better, considers each constraint in
H individually.

Definition. A valuation 8 is locally-better than another valuation o if,
for each of the constraints through some level k£ —1, the error after applying
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0 is equal to that after applying o, and at level k the error is strictly less
for at least one constraint and less than or equal for all the rest.

locally-better(8,0, H) =
dk > 0 such that
Viel...k—1VYpe€ H; e(pb) = e(po)
A Jq € Hy e(qf) < e(qo)
AN Vr e Hy e(rf) < e(ro)

Next, we define a schema globally-better for global comparators. The
schema is parameterized by a function g that combines the errors of all the
constraints H; at a given level.

Definition. A valuation 6 is globally-better than another valuation o if,
for each level through some level k—1, the combined errors of the constraints
after applying 6 is equal to that after applying o, and at level k it is strictly
less.

globally-better(0,0,H,g) =
dk > 0 such that
Viel...k—1 ¢(0,H;)=g(o,H))
A g(eaHk) < g(07 Hk)
Using globally-better, we now define three global comparators, using dif-

ferent combining functions g. The weight for constraint p is denoted by w,,.
Each weight is a positive real number.

weighted-sum-better(8,0, H) = globally-better(0,o, H,g)
where g¢(r, H;) = Z wpe(pr)
pEH;
worst-case-better(0,0, H) = globally-better(0,o, H,g)
where ¢(7,H;) = max{wye(pr)|p€ H;}
least-squares-better(8,0, H) = globally-better(8,0,H,g)
where g¢(r,H;) = Z wye(pr)?
pEH;

Orthogonal to the choice of locally-better or one of the instances of
globally-better, we can choose an appropriate error function for the con-
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straints. Locally-predicate-betteris locally-better using the trivial error func-
tion that returns 0 if the constraint is satisfied and 1 if it is not. Locally-
metric-better is locally-better using a domain metric in computing the con-
straint errors. Weighted-sum-predicate-better, weighted-sum-metric-better,
and so forth, are all defined analogously.

Unsatisfied-count-betteris a special case of weighted-sum-predicate-better,
using weights of 1 on each constraint; it counts the number of unsatisfied
constraints in making its comparisons. The predicate versions of the other
two global comparators aren’t particularly useful: worst-case-predicate-
better has an all-or-nothing behavior which doesn’t filter out solutions as
well as one might like; and least-squares-predicate-better always gives the
same results as weighted-sum-predicate-better (since 12 = 1).

22 Illustrative Examples

The first example in this subsection illustrates that constraints in
stronger levels dominate those in weaker levels, while the second illustrates
the various solutions that different comparators can produce.

First, consider the following constraint hierarchy, which includes the
canonical Celsius—Fahrenheit constraint:

Level Constraints
Ho | required Celsius* 1.8 = Fahrenheit — 32.0
Hy{ | strong Fahrenheit = 212
Hy weak Celsius = 0

The set Sy consists of all valuations such that the Hy (required) con-
straints hold. For this hierarchy, the set Sy is infinite, and consists of all
valuations with valid temperature pairs (C, F), i.e.,

So = {..., (-60,-76), (-40,-40), (0,32), (10,50), (100,212), ...}

while the set S consists of the single pair § = (100,212). For example,
S does not contain the pair ¢ = (10,50) because @ satisfies the level Hy
constraint whereas o does not. Thus, 3k > 0 (namely k£ = 1) such that 3¢ €
Hy, for which e(c#) < e(co). Therefore, locally-better(8,o0,H). Further,
S does not contain the pair p = (0,32) because although p satisfies the
Hy constraint that 6 does not, @ satisfies the Hy constraint that p does
not. Intuitively, because 6 satisfies the stronger Hy constraint better than
p, locally-better(6, p, H). This example produces exactly the same answer
whether locally-predicate-better, locally-metric-better, or one of the globally-
better comparators is used. However, this would not be the case in general.
(Some propositions concerning the relations between the comparators are
discussed in Section 23.)
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As a second example, consider the following constraint hierarchy H for
the domain R, and its solutions under each of the useful comparators.

(Note that Hg is empty for this hierarchy.)

Level  Constraint  Weight
H,q weak X =0 1.0
H,q weak X > 2 1.0
H,y weak X =4 0.25
Comparator Solutions
locally-predicate-better X=00o0r X =40
locally-metric-better 00X <40
weighted-sum-predicate-better X = 4.0
weighted-sum-metric-better X =20
worst-case-metric-better X=1.0
least-squares-metric-better X =1.3333

Using the weighted-sum-metric-better comparator, the solution consists
of exactly one valuation: 8§ = {X — 2.0}. Thus, 6 is weighted-sum-metric-
better than all other valuations including, for example, o = {X — 0.46}.
The following table summarizes the computation of g(8, Hy) and g¢(o, Hy),
verifying that ¢(6, H1) < g(o, Hy).

0 ={X—20} | c={X+— 046}
Constraints Error  Weighted | Frror Weighted
X=0 2.0 2.0 0.46 0.46
X>2 0.0 0.0 | 1.54 1.54
X =4 2.0 0.5 | 3.54 0.89
Weighted Sum 2.5 2.89

Using the locally-predicate-better comparator, the solution consists of two
valuations: § = {X — 0.0} and p = {X — 4.0}. Both valuations are better
than all the other valuations (including o = {X — 0.46}), but neither one
is better than the other. For example, the first of the following two tables
illustrates that locally-predicate-better(6, o) is true and thus o ¢ S.

0 ={X — 0.0} o={Xr— 046}
Constraints | Trivial Frror | Comparison Trivial Error
X=0 0 < 1
X >2 1 < 1
X =4 1 < 1

dg € Hye(qf) <e(qo) N Vr e Hye(rf) <e(ro)
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This second table illustrates that neither locally-predicate-better(,p) nor

locally-predicate-better(p, 6) is true, and thus both p € S and 6 € §.

f={X— 0} p={X+—4}
Constraints | Trivial Error | Comparison Trivial Error
X=0 0 < 1
X>2 1 > 0
X =4 1 > 0

-Vr € Hye(rf) <e(rp) N =Vr € Hye(rf) > e(rp)

23 Remarks on the Comparators

The definitions of the global comparators include weights on the con-
straints. For the local comparators, adding weights would be futile, since
the result would be the same with or without the weights.

One might argue that allowing an arbitrary number of constraint
strengths is unnecessary: since soft constraints can have weights on them,
one could make do with only two levels (required and one preferential level ),
and use appropriate weights to achieve the desired effects. There are three
reasons we believe such an argument is not valid: two conceptual, and
the other pragmatic. To illustrate the first reason, consider moving a line
with a mouse in an interactive graphics application. The line has a strong
constraint that it be horizontal, and another strong constraint that one
endpoint follow the mouse. There is also a weaker constraint that the line
be attached to some fixed point in the diagram. The user’s expectations
in this case are likely that the line will remain exactly horizontal and will
precisely follow the mouse (letting the weaker attachment constraint be
unsatisfied), rather than keeping the line nearly horizontal, or quite close
to the mouse, but letting the weaker constraint have a bit of influence on
the result. Second, since adding weights to constraints is futile for the local
comparators, we would need to give up these comparators and use only
global ones. Third, solutions to constraint hierarchies in which one level
completely dominates the next can often be found much more efficiently
than solutions to systems with only one preferential level and weights on
the constraints—see Section 4.

Most of the concepts in constraint hierarchies derive from concepts in
subfields of operations research such as linear programming [53], multiob-
jective linear programming [53], goal programming [39], and generalized
goal programming [38]. The domain of the constraints in operations re-
search is usually the real numbers, or sometimes the integers (for integer
programming problems). The notion of constraint hierarchies is preceded
by the approach to multiobjective problems of placing the objective func-
tions in a priority order. The concept of a locally-better solution is de-
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rived from the concept of a vector minimum (or pareto optimal solution,
or nondominated solution) to a multiobjective linear programming prob-
lem. Similarly, the concepts of weighted-sum-better and worst-case-better
solutions are both derived from analogous concepts in multiobjective linear
programming problems and generalized goal programming.

There are a number of relations that hold between local and global com-
parators.

Proposition 1 For a given error function e,

VOYoV H locally-better(0, 0, H) — weighted-sum-better(0,o, H )

Proof: Suppose locally-better(f, o, H) holds. Then there is some
level ¥ > 0 in H such that the error after applying 6 to each of the
constraints through levels k£ — 1 is equal to that after applying o. It
then follows that the sum of the weighted errors after applying 6 to
the constraints through levels £ — 1 is equal to that after applying
o. Furthermore, at level k the error after applying € is strictly less
for at least one constraint and less than or equal for all the rest.
This implies that the weighted sum of the errors after applying 6 to
the constraints at level k is strictly less than that after applying o.
Therefore weighted-sum-better(d, o, H) also holds. I

Corollary 1 For a given constraint hierarchy, let Spg denote the set of
solutions found using the locally-better comparator, and Sysg that for
weighted-sum-better. Then Swsg C Sig-

Proposition 2 For a given error function e,

VOVoV H locally-better(8, 0, H) — least-squares-better(6,c, H)
The proof is similar to that for Proposition 1.

Corollary 2 Let Sysq denote the set S of solutions found using the least-
squares-better comparator. Then Sysq C Sis.

Propositions 1 and 2 concern particular instances of the globally-better
schema. However, locally-better does not imply globally-better for an ar-
bitrary combining function ¢. In particular, locally-better does not imply
worst-case-better.
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24 Errors for Inequalities

A problem arises in connection with metric predicates and strict inequal-
ities. For example, what should be the error function for the constraint
X > Y, where X and Y are reals? If X is greater than Y, then the error
must be 0. If X isn’t greater than Y, we’d like the error to be smaller the
closer X is to Y. Thus, an obvious error functionise(X > Y)=0if X > Y,
otherwise Y — X . This isn’t correct, however, since it gives an error of 0 if
X and Y are equal. However, if the error when X and Y are equal is some
positive number d, then we get a smaller error when Y is equal to X + d/2
than when Y is equal to X, thus violating our desire that the error become
smaller as X gets closer to Y.

To solve this problem, we introduce an infinitesimal number € [61], which
is greater than 0 and less than any positive standard real number. Using ¢
we can then define

Y-X ifX<Y

(X>Y) = { e X =V
0 X >Y
0 X AY
(X #Y) = {e et
0 X <Y
(X <V) = { e X =Y

X-Y ifX>Y

Note that € is only being added to the range of the error function, not to
the domain D. If we did try to change the domain itself to be the hyperreal
numbers, we would end up with the same problem as before.!

25 Existence of Solutions

If the set of solutions Sy for the required constraints is non-empty, intu-
itively one might expect that the set of solutions S for the hierarchy would
be non-empty as well. However, this is not always the case. Consider the
hierarchy required N > 0, strong N = 0 for the domain of the real numbers,
using a metric comparator. Then Sy consists of all valuations mapping N to
a positive number, but S is empty, since for any valuation {N — d} € S,
we can find another valuation, for example { N — d/2}, that better satisfies
the soft constraint N = 0.

!What would be the error for the constraint 0 > ¢/2? According to the definition,
the error would be €/2. But this is less than the error for 0 > 0, even though the 0 > 0
constraint is more nearly satisfied.



234 BORNING, FREEMAN-BENSON AND WILSON

However, the following proposition, especially relevant for floating point
numbers, does hold:

Proposition 3 If Sy is non-empty and finite, then S is non-empty.

Proof: Suppose to the contrary that S is empty. Pick a valuation
61 from Sy. Since 6; ¢ S, there must be some 65 € Sy such that
better(0a, 61, H). Similarly, since 85 & S| there is an 63 € Sy such that
better(fs, 62, H), and so forth for an infinite chain 64,05, .... Since
better is transitive, it follows by induction that Vi,j > 0 [i > j —
better(6;,0;, H)]. The irreflexivity property of better requires that
Vi > 0 —better(f;,0;, H). Thus all the 6; are distinct, and so there
are an infinite number of them. But, by hypothesis Sy is finite, a
contradiction. J

For most (if not all) practical applications of constraint hierarchies, H
will be finite. For example, for a CIP or HCLP program, if the program
terminates, the resulting set of constraints will be finite. The next propo-
sition tells us that in many cases of practical importance, if the required
constraints can be satisfied, then solutions to the hierarchy exist.

Proposition 4 If Sy is non-empty, if H is finite, and if a predicate com-
parator is used, then S is non-empty.

Proof: Suppose to the contrary that S is empty. Using the same
argument as before, we show that there must be an infinite number of
distinct valuations 6; € Sy. However, if the comparator is predicate,
one valuation cannot be better than another if both valuations satisfy
exactly the same subset of constraints in H. Therefore each of the 6;
must satisfy a different subset of the constraints in H. However, this
is a contradiction, since H is finite. |

3. Extensions to the Constraint Hierarchy Theory

31 Read-only Annotations

As noted in Section 11, perturbation-based constraint systems often use
read-only annotations to help limit the choice of which variables should be
updated to re-satisfy the constraints after some change to the system. Con-
straint hierarchies provide an alternative method for specifying this choice,
without giving up the generality of multi-way constraints. However, even in
a multi-way constraint system with hierarchies, read-only annotations can
still be useful. One use is in constraints that reference an external input
device or other outside source of information. If we have a constraint that
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a point follow the mouse, the constraint should be read-only on the mouse
position (unless, of course, the mouse is equipped with a small computer-
controlled motor). Another use is in constraints describing a change over
time, where the constraint relates an old and a new state. Here, we may
wish to make the old state read-only, so that the future can’t alter the past.

Intuitively, when choosing the best solutions to a constraint hierarchy,
constraints should not be allowed to affect the choice of values for their read-
only variables, i.e., information can flow out of the read-only variables, but
not into them. (Alternatively we can say that constraints are only allowed
to affect the choice of values for their unannotated variables.) However,
we still want the constraints to be satisfied if possible (respecting their
strengths). In particular, required constraints must be satisfied, even if
they contain read-only annotations.

We now give an informal outline of the definition. One way of preventing
a constraint from affecting the choice of values for a variable is to replace
that occurrence of the variable by a constant. Thus, we begin the definition
of the set of solutions to a constraint hierarchy H by forming a set ¢) of con-
straint hierarchies, where each element of () is a constraint hierarchy with
arbitrary domain elements substituted for the read-only variables. (Note
that the same variable v may have read-only occurrences and normal occur-
rences. Only the read-only occurrences are replaced when forming elements
of Q.) Intuitively, we guess a valuation for v, and then form a hierarchy
using that guess. After making all possible guesses, we weed out solutions
arising from incorrect ones. (Note that this is purely a specification of the
meaning of read-only annotations, not a reasonable algorithm for actually
solving such constraint hierarchies! Algorithms are discussed in Section 4)

Here is an example:

Original H Q) formed by replacing Y? with d € D
Y7i—>983 Y?—3 |Y?+— —6.2 .
required X =Y?7 | X =983 | X =3 X =-6.2
strong X =4 X =4 X =4 X =1
weak Y =3 Y=3 Y=3 Y=3

Next we solve the constraint hierarchies in @), discarding any valuations
that map the remaining unannotated occurrences of a variable to something
different from what was substituted for its read-only occurrences. (In other
words, we discard all valuations in which we guessed incorrectly.) This
ensures that the permissible values for a variable won’t be affected by read-
only occurrences of that variable, but that they will be consistent with the
read-only occurrences. Continuing the example:
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q € Q formed by replacing Y7 with d € D

replacement p Y?— 9.83 Y73 e

required X = 9.83 | required X = 3
hierarchy q strong X =4 strong X =4

weak Y=3 weak Y=3
valuation 0 {Y -3, X—983}| {V —3,X+—3}
consistency YO0 #Y7 Y=Y
outcome Discard Keep

The valuation {Y — 3, X — 3} is the only consistent solution, and thus is
the solution to the original hierarchy.

We now give a formal definition of the meaning of read-only annotations.
In the definition, we will introduce new variables w;, which we will want to
omit in the final solution. We therefore define an operator omitting.

Definition. Let 6 be a valuation. Let the domain of § be the variables
V1,...,V,. Then
0 omitting wy, ..., w,

is the valuation o such that the domain of o is {vq,...,v,} —{w1y,...,wn},
and such that ov = fv for all v in the domain of o. Similarly, if O is a set
of valuations,

O omitting wy,...,w,, = {0 omitting wy,...,w,, |60 € O}

Definition. Let H be a constraint hierarchy containing read-only an-
notations, and let D be the domain of the constraints. Let v{,...,v,
be the variables in H that have one or more read-only occurrences. Let
wi, ..., W, be new variables not occurring in H, and let J be the hierar-
chy that results from substituting w; for each read-only occurrence of the
corresponding variable v;. (The w; are no longer annotated as read-only in
J; also, occurrences of the variables v; that aren’t annotated as read-only
are unaffected.) Define @) as the set of all hierarchies Jp, where each p is
formed by substituting arbitrary domain elements for the w;:

Q = {Jp|d1€D77dm€D7p:{wl'_>dlv7wm'_>dTn}}

Let solutions(Jp) be the set of solutions to Jp. (Here we are using the
definition of “solutions” given in the basic theory section (2), since J has no
variables with read-only annotations.) Let the set of consistent solutions

to Jp be defined as:

consistent(Jp) = {0 |6 € solutions(Jp) A
wip=v10 A ... A Wyp = v,0}
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In English, to be a consistent solution, if p maps w; to some domain element
d;, then # must map the corresponding v; to the same domain element d;
(i.e., we guessed correctly).

The desired set of solutions to H is the set of all consistent solutions,
omitting the mappings for the newly introduced variables w;:

solutions(H) = U consistent(Jp) | omitting wy,...wy,
JpeQ

Proposition 5 For a constraint hierarchy H containing only required con-
straints, let H' be the same hierarchy, but with the read-only annotations
removed. Then solutions(H) = solutions(H').

Proof:

solutions(H) D solutions(H")

Let vy, ..., 0m, w1,..., Wy, and J be defined as above. Let # be a solu-
tion for H'. Define p = {w; — v;0, ..., wp — v, 0}. (In other words,

if 6 maps v; to d;, then p maps the corresponding w; to d;.) Then
clearly 6 € solutions(Jp) and @ is consistent. So 6 € solutions(H ).
solutions(H) C solutions(H')

Now assume 6 is a solution for H. By definition,  is a consistent
solution to Jp for some p. As H consists only of required constraints
and as 6 is consistent with p, 6 also satisfies all of the constraints in

H. B

3.1.1 Blocked Hierarchies

Even with this definition, it is possible for a constraint to restrict the
values that its read-only annotated variables can take on. For example,
consider the following constraint hierarchy for the domain R:

required 'V > 0
required V71 =1

The V' > 0 constraint contains the only unannotated occurrence of V, and
thus only V' > 0 is allowed to affect the choice of values for V, and not
V? = 1. However, the solutions to the first constraint by itself, V' >
0, includes V' — 0.3, V — 1.728, and so forth, in addition to V — 1,
while solutions(H) = {V +— 1}. Thus, the choice of values for V' is being
affected by the V7 = 1 constraint. We therefore impose an additional check,
blocked( H), that tests for this situation.

The blocked( H) predicate is true if any constraint in H limits the per-
missible values for one of its read-only annotated variables. In such a case,
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additional constraints can be added to the hierarchy so that the set of solu-
tions can be found without any constraints limiting the permissible values
for the read-only annotated variables.

The definition of blocked(H ) is based on the following observation: if
there is a domain element d such that there are no solutions when d re-
places all occurrences of a variable (both annotated and unannotated), but
there are solutions when d replaces only the unannotated occurrences, then
the annotated (read-only) occurrences are eliminating d from solutions(H ).
Thus, if such a d exists, the annotated occurrences are restricting the values
that the variable can take on, and blocked( H) is true.

Definition.

blocked(H) = 3d e D 3Ji€[1...m] such that
solutions(Jpbo) =0 A solutions(JOc) #
where p = {w; — d}, 0 = {v; — d}, and
o= {wy— vy,..., Wi — Vj_1,

Wit1 > Vig1,- -, Wiy Um}

If there are no read-only annotations on the variables in H, then clearly

blocked( H) is false.

Within the logic programming community, read-only annotations were
originally introduced in Concurrent Prolog [71] for an entirely different pur-
pose than ours, namely for the control of communication and synchroniza-
tion among networks of processes. In our work, having a blocked solution
is an unusual and undesirable state, which would arise only if a design or
other error had been made in specifying the constraints. In contrast, in
concurrent logic programming, blocking caused by read-only annotations is
ubiquitous and essential in controlling program execution.

There were problems with the original formulation of read-only anno-
tations in Concurrent Prolog (see [64] for a discussion), and a number of
alternatives have been proposed. For example, Maher [48] describes ALPS,
a class of languages that incorporates constraints into a flat committed-
choice logic language. The definition of blocked was directly inspired by the
ALPS work.

2.1.2 llustrative Fxamples of Using Read-only Annotations
Consider the hierarchy H for the domain R:
required C' % 1.8 = F7 — 32.0

strong ¢ =0.0
weak F=212.0
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Without the read-only annotation on F’, the solution to this hierarchy would
be {{C — 0.0, F — 32.0}}.
However, to find the solution while accommodating the read-only anno-

tation, the hierarchy J is formed by replacing F?7 by a newly introduced
variable W:

required C' ¥ 1.8 = W — 32.0
strong C=0.0
weak F =212.0

@ is the set of all hierarchies resulting from substituting an arbitrary real
number for W. For example, the hierarchy resulting from the substitution
p =AW — 14.0} is:

required C' 1.8 = 14.0 — 32.0
strong C=0.0
weak F =212.0

which has the singleton set of solutions {# = {C — -10.0, F — 212.0}},
but is not consistent because Wp # F6 (14.0 # 212.0).

The only hierarchy in ) with a consistent solution results from
p=A{W — 212.0} :

required C' 1.8 = 212.0 — 32.0
strong C=0.0
weak F =212.0

and so the set of solutions to the original hierarchy H is {{C — 100.0,
F — 212.0}}. (Note that the strong C' = 0.0 constraint is not satisfied
because there is no consistent solution that satisfies it.)

Now consider the motivating example in Section 31.1 for which blocked
is true:

required 'V >0
required V7 =1

To illustrate the definition of blocked, form the new hierarchy J by re-
placing V7 with W:

required V > 0
required W =1
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There exists a d € R, for example d = 6, such that, for the substitutions
p={W~6},6 ={V — 6}, and o = {}, Jp#o has no solutions, but Jbo

does have a solution:

Jpbo Jbo
required 6 > 0 required 6 > 0
required 6 =1 required W =1

no solutions {{W ~ 1}}

Hence blocked is true for this hierarchy. However, if we added the ad-
ditional constraint required V' = 1 to the original hierarchy, then blocked
would become false.

1.3 Practical Fxamples of Using Read-only Annotations

A trivial but useful example is a spreadsheet-like constraint that
Al + B? 4+ C? = Sum. The read-only annotations prevent the user from
editing Sum and having the change propagate back to A, B, or (', but still
allow the user to edit A, B, or C.

As noted in the introduction, an important use of read-only annotations
is in constraints that reference an external input device or other outside
source of information. For example, if we have a constraint that a point P
follow the mouse, the constraint should be read-only on the mouse position:

P = mouse.position?

As another example, suppose we have a simple scrollbar displayed on
the screen. When the “thumb” is dragged up and down, we want the
top and bottom of the scrollbar to remain fixed. However, we want to be
able to reposition the scrollbar as a whole, so simply anchoring the top
and bottom isn’t the correct solution.? To handle this problem cleanly, we
define a constraint relating the position of the thumb, the top, the bottom,
and a number percent, in which the the top and bottom are annotated as
read-only:

thumb — bottom?

top? — bottom?

percent =

The read-only annotations on top and bottom are specific to this con-
straint, so the whole scrollbar can be repositioned by some other “move”
constraint.

2We could almost achieve the desired result by putting strong (but not required)
anchors on the top and bottom of the mouse. However, if other constraints on the
output value from the slider became too strong, then the top or bottom would move; we
would prefer a more robust object.
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21.4 Clrcularities

While the sets of solutions to many hierarchies are intuitively clear, this
clarity often vanishes when the hierarchy contains cycles. We present two
such examples here. These are pathological cases that would not arise in
realistic applications—but nevertheless the theory should and does specify
how they are to be handled.

The following two hierarchies both contain a cycle through variables an-
notated as read-only. In the first hierarchy, none of the constraints in the
cycle is more restrictive than the others and so, intuitively, information can
flow properly and still yield a solution.

required X7 =Y +1
required X =Y7+1

For this hierarchy, blocked is false and the set of solutions is the infinite set
H{X—d+1,Y—d}|de R}

In the second hierarchy, however, the required X7 = Y + 1 constraint
is more restrictive than the required X > Y7 one. Thus the “unequal”
information flow results in blocked being true.

required X7 =Y +1
required 'Y = 20
required X > Y7

For this hierarchy, the set of solutions is {{X — 21,Y — 20}}; however,
blocked is true.

32 Write-only Annotations

In addition to read-only annotations, it is also convenient if write-only
annotations are available. Intuitively, if a variable is annotated as write-
only in a constraint, we only want information to be able to flow from
the constraint into that variable, and not back. We could define the effect
of write-only annotations from first principles, in a manner analogous to
the definition for read-only annotations. However, it is simpler to define
write-only annotations in terms of read-only annotations.

Definition. Let H be a constraint hierarchy containing write-only an-
notations (it may contain read-only annotations as well), and let D be the
domain of the constraints. Let vq,...,v,, be the variables in H that have
one or more write-only occurrences. Let wq,...,w,, be new variables not
occurring in H, and let J be the hierarchy that results from substituting w;
for each write-only occurrence of the corresponding variable v;. Let J’ be
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the hierarchy formed by augmenting J with the additional required con-
straints v; = w;? for 1 < ¢ < m. The desired set of solutions to H is the
the set of solutions to J', with the mappings for the w; omitted:

solutions(H) = solutions(.J') omitting w1, ...wy,

The definition of the set solutions(J') used above is, of course, that given
in Section 31.

For example, let H be:

required X! =Y
strong X =4
weak Y=3

Intuitively, even though the constraint X = 4 is stronger than the con-
straint Y = 3, information will only be allowed to flow from Y to X in the
X! =Y constraint, since X is annotated as write-only. Tracing through the
definition, the hierarchy J’ is formed by replacing X! by a newly introduced
variable W, and adding the required constraint X = W?.

required W =Y
required X = W?
strong X =4
weak Y=3

The set of solutions to J' is {{W — 3, X — 3,Y — 3}}. The desired
set of solutions to H is the same, but with the mapping for W omitted:
{{X 3,V 3},

33 Partially Ordered Hierarchies

In some applications, imposing a total order on the constraint strengths
may be over-specifying the problem. We therefore also define the set of
solutions to a partially ordered constraint hierarchy. A partially ordered
hierarchy must still have a distinguished required strength. However, the
other constraint strengths need only be placed in a partial order, rather
than a total order.

Informally, we define the set of solutions to a partially ordered constraint
hierarchy by forming the set of all totally ordered hierarchies that are con-
sistent with the original one. These totally ordered hierarchies are formed
by adding any additional, permissible orderings between the partially or-
dered strengths: less than, greater than, or equal. The desired set of so-
lutions is then the union of the sets of solutions to the totally ordered
hierarchies.
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Definition. If P is a partially ordered hierarchy, a totally ordered hi-
erarchy H is consistent with P if (1) both hierarchies contain the same
constraints, and (2) there is a mapping m from the strengths of P to the
strengths of H such that if sy < sy in P then m(s;) < m(sg) in H, and (3)
Vi, s;c; € P iff m(s;)¢; € H.

Definition. Let P be a partially ordered hierarchy. Then

solutions(P) = U solutions(H )
HeH

where H is the set of all totally ordered hierarchies consistent with P.
As a trivial example, consider the following hierarchy:

wimpy X=3
indecisive X = 4

Strengths wimpy and indecisive are both non-required, but no order-
ing is specified between them. The total orders that are consistent with
this partial order make wimpy stronger than indecisive, wimpy weaker
than indecisive, and wimpy the same strength as indecisive. The locally-
predicate-better solutions to these hierarchies are {{X — 3}}, {{X — 4}},
and {{X — 3},{X — 4}} respectively. Therefore, the set of locally-
predicate-better solutions to the original partially ordered hierarchy is

{{X — 3}, {X — 4}}.

The definition involves adding all possible orderings between the
strengths, including equality. For the local comparators, equality is
unnecessary—any solution for a totally ordered hierarchy formed using an
equality relation will also be a solution for one of the other totally or-
dered hierarchies formed using just inequality. This is, however, not the
case for the global comparators. For example, if the least-squares-better
comparator is used, the solutions to the totally ordered hierarchies are
{{X — 3}}, {{X — 4}}, and {{X — 3.5}} respectively, so that the set of
least-squares-better solutions to the original partially ordered hierarchy is

{{X — 3}, {X — 3.5},{X — 4} }.

We have also considered a variant definition for the solutions to partially
ordered hierarchies. In the variant, not only would the constraints from
two partially ordered strengths be combined into a single strength (i.e., the
equality ordering), but also all possible weightings between the constraints
would be used. In the above example, for least-squares-better, the following
infinite set of totally ordered hierarchies would be considered:
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strong X =3
weak X =4
strong X =4
weak X =3

medium[wy] X = 3
medium[wy] X =4
for all positive numbers (weights) wy and ws.

The set of solutions in this case would map X to all numbers between 3
and 4 inclusive, i.e. {{X — a} |a € [3...4]}.

34 Objective Functions

In a standard linear programming problem [53], we wish to minimize (or
maximize) the value of a linear function z(2y,...,25) = @121 +.. .+ apzg in
k real-valued variables x1, ..., 2k, subject to the non-negativity constraints
z1 > 0,...,2p > 0, and also subject to m additional linear equality or
inequality constraints on 1, ..., 2. The function to be minimized or max-
imized is called the objective function.

If the objective function is to be minimized, and if its coefficients z;
are all non-negative, then we can easily represent the linear programming
problem as a constraint hierarchy. The k non-negativity constraints and the
m additional linear equality and inequality constraints can be represented
as required constraints, and the objective function can be represented as
a soft constraint z(z1,...,zx) = 0, since we know a priori a lower bound
(namely 0) on the value of the objective function. However, if a lower bound
isn’t known a priori, then this transformation would not be appropriate.
We could instead set a goal g for the objective function, and decide that we
would be completely satisfied if we reach or exceed the goal. (This is the
goal programming approach.) In this case, we can represent the objective

function as the soft constraint z(z1,...,2x) < ¢. Another approach would
be to represent the objective function as the soft constraint z/(zy,...,2x) =
0 where

)

Z(z Tk
byees 2(@1,...,xk)+2 if 2(zq,...,28)

2 = {—1/z(x1,...,;vk) if z(z4,..., j

(AVAWAN

However, this approach has the disadvantage that it has converted a linear
problem into a nonlinear one, making it much harder to solve.

Similar arguments apply for the case of maximizing an objective function.
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To overcome these difficulties, we can again extend the basic constraint
hierarchy theory to include objective functions explicitly. A constraint hi-
erarchy with objective functions is a constraint hierarchy, along with a set
of objective functions, also labeled with strengths (which must all be non-
required). To simplify the definition, we first replace any objective function
z(x1,...,2k) to be maximized by 0 — z(z1,...,2), which should be min-
imized. Let Z; be the set of objective functions at the ith level of the
hierarchy. We can then extend the definition of locally-better as follows.
(The expression z6 denotes the value of z(z416,...,z40), i.e. the value of z
when applied to the values for zy,. ..,z defined by 6.)

locally-better(8,0, H) =
dk > 0 such that
Viel...k—1 (Vpe H; e(pf)=e(po) N Vz€ Z; 20 = z0)
AN (g€ Hy e(qf) < e(qo) V Fz€ Z; 20 < zo)
AN Vr e Hy e(rf) < e(ro)
ANVzeZr z0 <:zo

In other words, for 8 to be locally-better than o, § must do exactly as
well as o on both the constraints and objective functions through level
k —1; at level k, # must do as well or better on all the constraints and
objective functions, and it must do strictly better for at least one constraint
or objective function.

In keeping with its nature, locally-better considers constraints and ob-
jective functions individually. The globally-better comparators combine the
errors for the constraints at a given level of the hierarchy. The constraint
errors are bounded below by 0, while in general the objective function has
no definite minimum value—so combining these values into one composite
value seems unwise. For the global comparators, therefore, we restrict the
constraint hierarchy with objective functions to have at each level either
just constraints, or just a single objective function. (Multiple objective
functions at a given level should be replaced by a single function that com-
bines the values appropriately.)

The extended globally-better schema is:

globally-better(0,0,H,q) =
dk > 0 such that
Viel...k—1 (g¢(0,H)=g(o,H;) N z6=z0)
AN (g(0,Hy) < g(o,Hy) V 210 < 2,0 )
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Here, if 7 is a level containing constraints, ¢(7, H;) is defined in the usual
way and z;7 is 0; if 7 is a level containing an objective function, g(7, H;) is
defined to be 0, and z;7 is the value of the objective function at that level.

35 Comparing Solutions Arising from Different Hierarchies

In some applications—in particular, in many HCLP(R) programs that
we have written—to rule out unintuitive solutions, it is useful to compare
not just solutions to a given constraint hierarchy, but also solutions from
several different hierarchies. (In logic programming, these different hierar-
chies are generated by alternate choices of rules.) We have extended the
theory described above to include such comparisons [86], but, for the sake
of brevity, we don’t discuss this extension here.

4. Constraint Satisfaction Algorithms

Searching for an efficient constraint satisfaction algorithm that works for
all domains, comparators, and kinds of constraints would be a futile en-
deavor. Rather, we need to look for algorithms specialized by one or more
attributes. In [26] we outline a number of algorithms for solving constraint
hierarchies, each of which makes a different engineering trade-off between
generality and efficiency. Much of our research so far has used the locally-
predicate-better comparator over arbitrary domains. When there are no
circularities in the constraint graph, we have an efficient incremental algo-
rithm for this comparator. For arbitrary linear constraints, we also have an
efficient algorithm based on linear programming techniques. In the follow-
ing sections, we briefly discuss these two algorithms. For more details on
the incremental acyclic algorithm, the reader is referred to [23, 25, 26, 50];
[26] and [50] include proofs of correctness and complexity results. Refer-
ences [24, 27, 85] discuss the linear programming algorithm.

41 Blue and DeltaBlue: Algorithms for Acyclic Hierarchies

Among the most common techniques for satisfying constraints is local
propagation. In local propagation, a constraint can be used to determine
the value of one of its variables whenever the values of the other n — 1
of its variables are known. This may then allow some other constraint to
determine another variable’s value, and so forth. Local propagation is sim-
ilar in this respect to propagating values through a dataflow network. The
difference is that while a dataflow network has a single (partially ordered)
propagation path, a set of multi-way constraints typically has many poten-
tial propagation paths. Thus the constraint solver must in general decide
which path to use, and in the case of a constraint hierarchy solver, ensure
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that this is a path that computes a “best” solution.

For local propagation, each constraint supplies one or more methods:
procedures that, if executed, will cause the constraint to be satisfied. Each
method determines a value for one or more variables (outputs) from its
other variables (inputs). For example, the plus constraint A+ B = C' has
three methods: A « ¢ — B, B «— C — A, and ' —« A+ B. A local
propagation constraint solver produces a propagation path by selecting,
and perhaps executing, a method for each constraint in the hierarchy (or,
if the constraint cannot be satisfied, no method).

Because local propagation solutions are based on these “all or nothing”
methods rather than on some error metric, local propagation constraint
solvers are restricted to the predicate comparators from Section 21. Simi-
larly, because local propagation paths utilize at most one method (i.e., at
most one constraint) per output variable, they are unable to solve cyclic
constraints such as those produced by a set of simultaneous equations.

We christened our local propagation algorithm for constraint hierarchies
“Blue”. Subsequently, to improve response time for large constraint graphs,
we developed an incremental version of the algorithm which we named
DeltaBlue. The Blue algorithm is O(N?) in the total number of constraints,
whereas the DeltaBlue algorithm is O(¢N) in the number of affected con-
straints [31].

Local propagation algorithms, such as Blue and DeltaBlue, can easily
accommodate read-only and write-only annotations as well as partially or-
dered hierarchies. The read-only and write-only annotations are handled
by not including certain methods. For example, A? + B = (' would have
two, instead of three, methods: B «— (' — A and ' — A + B, but not
A «— C'—B. Similarly, A+ B! = C would have just one method: B — C'—A.
Partially ordered hierarchies are easily handled as well by the basic Blue
and DeltaBlue algorithms. The basic Blue and DeltaBlue algorithms find a
single locally-predicate-better solution to the constraint hierarchy. However,
both algorithms can be modified to return all solutions, as in the ThingLab
I Multiple Solutions Browser [28].

We have implemented and used both Blue and DeltaBlue in Smalltalk,
C, C++, Object Pascal, and Common Lisp. All of these implementations
support read-only and write-only annotations, but only the Smalltalk im-
plementation accommodates partially ordered hierarchies.

42 Algorithms for Linear Equality and Inequality Constraints

One disadvantage of local propagation algorithms is that they cannot re-
liably handle cycles in the constraint graph. In some cases these algorithms
will find an acyclic solution to a cyclic graph, but this behavior is not guar-
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anteed; the algorithms often halt with a “cyclic constraint graph” error
message instead. Further, if the constraints are truly simultaneous, then
local propagation algorithms simply cannot find a solution. Therefore, we
designed another set of algorithms that can solve constraint hierarchies con-
sisting of arbitrary collections of linear equality and inequality constraints
using the weighted-sum-metric-better, worst-case-metric-better, and locally-
metric-better comparators. These algorithms are instances of our general
DeltaStar [24, 27] framework and are collectively referred to as the Orange
algorithms.

The DeltaStar framework is an algorithm for incrementally solving a
constraint hierarchy, based on an alternate, but provably equivalent, de-
scription of the constraint hierarchy theory [24, 29, 85]. Whereas the basic
constraint hierarchy theory in Section 2emphasizes the dichotomy between
the hard and soft levels, the alternative theory emphasizes the hierarchical
refinement of the set of solutions.

The Orange algorithms use the basic DeltaStar framework by transform-
ing the constraint hierarchy into a series of linear programming problems—
one problem for each level in the hierarchy. All three Orange algorithms
have been implemented in Smalltalk and Common Lisp. However, none of
these implementations supports partially ordered hierarchies or read-only
and write-only annotations.

43 Other Algorithms

Although not designed for solving constraint hierarchies, many other con-
straint solving techniques are available, including augmented term rewrit-
ing [46], relaxation [3, 44, 75], and searching for a solution over a finite
domain. Augmented term rewriting is an equation rewriting technique
borrowed from functional programming languages, with added support for
objects and multi-directional constraints. Relaxation is an iterative numer-
ical technique, in which the value of each real-valued variable is repeatedly
adjusted to minimize the error in satisfying its constraints. Relaxation will
converge on a least-squares-better solution, unless it gets trapped in a local
but suboptimal minimum. Mackworth [47], Van Hentenryck [78], and oth-
ers describe efficient algorithms for solving sets of constraints on variables
ranging over finite domains.

5. Using Constraint Hierarchies

In the following sections, we discuss four systems in which we have used
constraint hierarchies: ThingLab, ThingLab II, HCLP(R) (a language that
integrates constraint hierarchies with logic programming), and Kaleido-
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scope (a hybrid constraint-imperative programming language); we also list
anumber of systems built by other researchers that have applied this theory
as well.

81 Systems for Building Simulations and User Interfaces

ThingLab [3] was a constraint-based laboratory that allowed a user to
construct simulations of such things as electrical circuits, mechanical link-
ages, demonstrations of geometric theorems, and graphical calculators us-
ing interactive direct-manipulation techniques. ThingLab used two kinds of
local propagation, as well as relaxation, to solve constraints. It would prop-
agate known values “forward” and degrees of freedom “backward” through
the graph. Later versions of ThingLab incorporated such features as ex-
plicit constraint hierarchies (as described here), incremental compilation,
and a graphical facility for defining new kinds of constraints [4, 7, 19, 51].
The Animus system [5, 15] was an animation system implemented on top of
ThingLab. Animus added temporal constraints to ThingLab where a tem-
poral constraint is a relation that is required to hold between the existence
of a stimulus event and a response in the form of a stream of new events.
ThingLab II is a complete rewrite of the original ThingLab, oriented to-
ward building user interfaces [50, 51]. ThingLab II supports constraint
hierarchies, and includes an implementation of the DeltaBlue incremen-
tal constraint satisfaction algorithm. ThingLab II also includes a compiler
that optimizes structured, constrained objects by discarding unnecessary
structure and compiling the constraints into native code [19].

In other research on using constraint hierarchies in user interfaces, Ep-
stein and LaLonde [17] used our constraint hierarchy theory in implement-
ing a layout system for Smalltalk windows. They used constraints to define
the relation between the canvas size, window size, and scale factors. By de-
fault, all parameters were variable. However, the user could add a stronger
constraint that one or more of the parameters stayed fixed, thus creat-
ing a fixed canvas, fixed size, or fixed scale window. TRIP and TRIP II
[43, 77] also use constraint hierarchies for user interfaces, with a two-level
constraint hierarchy consisting of required constraints and one level of soft
constraints, with weights on each soft constraint. Delta TRIP is a version
of TRIP II using the DeltaBlue algorithm as its constraint satisfier. Fi-
nally, constraint hierarchies were used to simulate the physiological affects
of open-heart surgery in a system for supporting anesthesiologists in the
operating room [62].
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52 Constraint Hierarchies in Logic Programming Languages

In standard logic programming, as exemplified by Prolog, rules are of the

form
p(t) = qu(t), ., gm(t).

where p, ¢1, ..., q,, are predicate symbols, and t denotes a list of terms. The
Constraint Logic Programming (CLP) scheme [40] is a general scheme for
extending logic programming to include constraints, and is parameterized
by D, the domain of the constraints. In a CLP language, rules are of the
form

PE) = G (8)s e gm(8) er(E), o ea(t).

where p,qq,...,q, are as before, and cq,...,c, are constraints over the
domain D.

Operationally, in a CLP language we can think of executing the Prolog
part of the program in the usual way, accumulating constraints on logic
variables as we go, and either verifying that the constraints are solvable or
else backtracking if they are not. The program can terminate with substi-
tutions being found for all variables in the input, or with some constrained
variables still unbound, in which case the output would include the remain-
ing constraints on these variables.

Hierarchical Constraint Logic Programming (HCLP) [6, 85, 86] is a gen-
eralization of the CLP scheme, and is again parameterized by the domain
D of the constraints. In HCLP rules are of the form

P(t) = (b)), gm(t), s1€1(), - -, Spen(t).

where each s; is a symbolic name indicating the strength of the correspond-
ing constraint c;.

Operationally, goals are satisfied as in CLP, temporarily ignoring the
non-required constraints, except to accumulate them. After a goal has been
successfully reduced, there may still be non-ground variables in the solu-
tion. In this event, the accumulated hierarchy of non-required constraints
is solved, using a method appropriate for the domain and comparator, thus
further refining the values of these variables. Additional answers may be
produced by backtracking. As with CLP, constraints can be used multi-
directionally, and the scheme can accommodate collections of constraints
that cannot be solved by simple forward propagation methods.

To test our ideas, and to allow us to experiment with HCLP programs,
we have written two different HCLP interpreters. Our first interpreter is
written in CLP(R), allowing it to take advantage of the underlying CLP(R)
constraint solver and backtracking facility. As a result, it is small (2 pages
of code) and clean. However, it is not incremental—rather, it recomputes
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all the locally-predicate-better answers for each derivation, instead of incre-
mentally updating its answers as constraints are added and deleted due to
backtracking, and thus the interpreter is not particularly efficient. Our
second HCLP interpreter is again for the domain of the real numbers,
but supports the weighted-sum-metric-better, worst-case-metric-better, and
locally-metric-better comparators instead. The comparator to be used in a
given program is indicated by a declaration at the beginning of an HCLP
program. The second interpreter is implemented in Common Lisp, and uses
the DeltaStar algorithm mentioned in Section 42. The second interpreter
includes some evaluable predicates for performing input and graphical out-
put, so that we can use HCLP for interactive graphics applications. Further
details regarding both implementations may be found in [85].

53 Constraint Hierarchies in Imperative Languages and Sys-
tems

Imperative languages, such as those in the Algol family, have the standard
notions of state and destructive assignment. Pure constraint languages, on
the other hand, are declarative, without state and assignment. Constraint
imperative programming languages, such as Kaleidoscope’90 and 91, are
an attempt to merge these two apparently incompatible paradigms.

In CIP (Constraint Imperative Programming), the two paradigms are
reconciled by using imperative statements to provide control flow and con-
straint expressions to provide computation. Imperative assignment state-
ments are translated into constraints between the previous and current
states of the object. In other words, X:=X+1 is defined as the constraint
X: = X;-17+4 1. (The read-only annotation is used to prevent any compu-
tations in the present from changing the past.) Objects are represented as
a stream of values over time, as in Lucid [83], where time is defined by the
execution of subsequent imperative statements. A weak equality constraint
between each pair of values ensures that the object does not change ran-
domly: ¥t weak X; = X;—1?7. When a variable is assigned to, the stronger
“assignment” constraint will override the weaker stay constraint, and the
object’s state will change. The new value will be propagated forward via
the weak stay constraints until the variable is assigned to again.

Constraints do not typically refer to time, whereas time (or rather, se-
quencing) is crucial to an imperative language. Thus the Kaleidoscope
languages use constraint templates to create constraints over a variety of
intervals, including: just once (e.g., an assignment constraint), until some
condition is false (e.g., asserting a constraint while the mouse button is
held down), or always (e.g., a data invariant).

Additionally, the Kaleidoscope languages are object-oriented, supporting
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both user defined objects and user defined constraints over those objects.
These latter constraints are defined using constraint constructors: side-
effect-free procedures that define the meaning of complex constraints over
objects in terms of more primitive constraints over the objects’ component
parts.

Further details regarding the semantics and implementations of both
Kaleidoscope’90 and ’91 can be found in [20, 21, 22, 29].

54 User Interface Issues

There are a number of user interface issues that arise in supporting con-
straint hierarchies, three of which are discussed here: how to express con-
straints, how to show alternate solutions to the constraint hierarchy, and
how to achieve good performance in an interactive graphical constraint-
based system.

84.1 Fzpressing Constraints

Expressing constraint hierarchies in a textual language presents no par-
ticular difficulty; once we have a syntax for the constraints themselves, we
can annotate them with strengths. In ThingLab, our approach has been
to manipulate graphical objects that carry the constraints, rather than
graphically representing the constraints themselves. For example, when
constructing a graphical calculator, we insert Plus, Times, Printer, and
other sorts of objects, each of which holds state, icon, and constraint in-
formation. This approach carries over naturally to constraint hierarchies:
objects can carry both required and preferential constraints. Objects will
normally have weak stay constraints on their parts to give stability to them
and to any larger containing object, in addition to any other constraints
they may have.

84.2 Showing Alternate Solutions

A given constraint hierarchy may have several solutions (even infinitely
many). The technique used in HCLP(R) to present multiple solutions is the
same as in other logic programming languages such as Prolog and CLP(R).
A single answer may represent one or more solutions. For example, the
answer X > 5 compactly represents the infinite set of solutions mapping
X to each real number greater than 5. Answers are presented, one at a
time. The user can reject an answer, and backtracking will produce a new
one (if one exists). As in CLP(R), a given answer can contain variables,
perhaps with constraints on them. For example, consider the following
short HCLP(R) program:
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(a) banana(X) :- artichoke(X), weak X>6.
(b) artichoke(X) :- strong X=1.
(¢) artichoke(X) :- required X>0, required X<10, weak X<4.

Given the goal ?- banana(A), the first answer would be produced using
the banana clause (a) and the first of the artichoke clauses (b), yielding
the hierarchy strong X = 1, weak X > 6. There is a single answer to this
hierarchy, namely X = 1, which would then be displayed. Upon backtrack-
ing, the second artichoke clause (c) is selected, resulting in the hierarchy
required X > 0, required X < 10, weak X < 4, weak X > 6. Using the
locally-predicate-better comparator, this hierarchy has two answers. The
first answer to this hierarchy, but the second to the goal,is X > 0, X < 4.
Upon further backtracking the third and final answer to the goal, namely
X > 6,X < 10, would be displayed. Thus, this program produces two
constraint hierarchies and three answers:

Clauses Hierarchies Answers
strong X =1 _
a, b weak X>6 X=1

required X >0
required X < 10
weak X <4
weak X >6

0< X <4 6< X <10

Both of our HCLP(R) implementations have primarily textual interfaces.
In a system with a graphical interface, presenting multiple solutions raises
some interesting problems. ThingLab II adopts the simple strategy of just
picking one solution. In a previous version of ThingLab [28], we did allow
the user to browse through multiple solutions graphically. For overcon-
strained problems (i.e., cases in which HCLP would return additional an-
swers on backtracking), the multiple solution browser would pop up a menu
of alternate solutions, so that the user could browse through the different
alternatives. For underconstrained problems (i.e., cases where HCLP would
return an answer with one or more variables not bound to a unique value),
the multiple solution browser would allow the user to move interactively
through the space of possible solutions. The user would select an under-
constrained part, and the system would respond by displaying a control
icon in a new pane and by setting up constraints relating the position of
the icon to underconstrained variables in the selected part. The user could
then move the control icon in either one or two dimensions, depending
on how many degrees of freedom remained for the underconstrained part.
(Our implementation didn’t support manipulating parts with more than
two degrees of freedom, although it could be so extended.) Based on the
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position of the icon, the system would satisfy the constraints and display
the solution. Both techniques (for overconstrained and underconstrained
problems) would be used simultaneously if needed.

84.3 Performance Issues

In an interactive application, keeping the perceived response time low
is perhaps more important than achieving the fastest speed. We use two
terms in discussing response time: latency, the delay between the input
event and the first time the constraints are satisfied; and repetition time,
the time it takes to re-satisfy the constraints each time the screen image is
updated.

In a naive implementation of constraint hierarchies, the system, in re-
sponse to each new input event, would first remove any old constraints
from previous input events, and then add one or more constraints to the
constraint hierarchy. Thus, each new input event would result in a new
constraint hierarchy, a new invocation of the constraint solver, and a new
set of solutions. The latency and repetition time would be identical. For
example, if the scroll bar of a window is being moved by the mouse, the
mouse motion events remove and add a sequence of individual constraints:
ScrollBar = 15, ScrollBar = 16, ..., ScrollBar = 25, etc.

The implementations of the DeltaBlue algorithm in ThingLab and
ThingLab II divide the task of solving the constraints into two parts:
structure-directed solving, and data-directed solving. The structure solver,
or planner, finds one or more solutions to a constraint hierarchy based
only on the structure of the constraints (which variables they constrain,
whether or not they constrain their variables uniquely, and so forth). The
data solver uses the structure solution to satisfy the constraint hierarchy
for specific data values. The structure solution is known as a “plan” be-
cause it embodies the procedure for solving the hierarchy. The same plan
can be used to solve for multiple data values, until the hierarchy is altered
by adding or removing constraints.

Because the data solver is much faster than the structure solver, an “ac-
tive” (or “edit”) constraint is used to modify data values without chang-
ing the hierarchy. In the scroll bar example, this means that rather than
adding and removing the sequence of constraints, the single active con-
straint ScrollBar = Mouse is used. The Mouse variable injects the current
position of the mouse into the constraint hierarchy, and the data-driven
solver can use the existing plan to produce a new solution. The run-time
of this technique is 15 4+ nD (1 Structure solution + n Data solutions)
whereas the run time if constraints are added and removed for each new
value is n(.S + D)—substantially slower.

ThingLab II has two techniques for executing the plan. The first is inter-
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pretation; the second is compilation into native code, followed by execution
of that code. When the plan is interpreted, the latency is moderate and
the repetition time is moderate. When the plan is compiled, the latency
is very high and the repetition time is low. Thus, if the same plan will be
used repeatedly, the average run-time will be decreased by compiling the
plan. However, during prototyping and development, the constraint hierar-
chy is in a constant state of flux, causing compiled plans to become obsolete
and be discarded. Thus, to decrease the variability of response time, our
ThingLab IT work has emphasized fast interpretation. Once the constraint
hierarchy for an object has been designed, implemented, and tested, the
ThingLab II compiler [19] can be used to compile the constraints into effi-
cient native code.

6. Other Related Work

Much of the previous and related work on constraint-based languages and
systems can be grouped into the following areas: geometric layout, spread-
sheets and similar systems, user interface support, general-purpose pro-
gramming languages, and artificial intelligence applications. In this section
we discuss a number of these related efforts. Since this body of related work
is very large, here we concentrate on work, in addition to that described
in Section A.involving combinations of hard and soft constraints. Other
bibliographies and discussions may be found in [26], [29], and [46].

61 Geometric Layout

Geometric layout is a natural application for constraints, and was also
their first area of application, in the venerable Sketchpad system [75, 76].
Sketchpad allowed the user to build up geometric figures using primitive
graphical entities and constraints, such as point-on-line, point-on-circle,
collinear, and so forth. When possible, constraints were solved using local
propagation. When this technique was not applicable, Sketchpad would
resort to relaxation. Although the primitive constraints were hard-coded
into the system, new primitive constraints could be added by programming
an error function in the underlying implementation language. In addition to
its geometric applications, Sketchpad was used for simulating mechanical
linkages. Sketchpad was a pioneering system in interactive graphics and
object-oriented programming as well as in constraints. Its requirements
for CPU cycles and display bandwidth were such that the full use of its
techniques had to await cheaper hardware years later.

Juno [58] is a constraint based system for geometric layout similar to
ThingLab. The major innovation of Juno was its dual presentation of the
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constraints: one window contained the graphical layout defined by the con-
straints while the other window contained the textual definition of the same
constraints. Both representations were editable, and the results were re-
flected in both windows simultaneously. Other constraint-based geometric
layout systems include IDEAL [79, 80], Magritte [33], COOL [43], Converge
[73] for 3-d geometric modeling, and [2] for laying out cyclic graphs.

All of the interactive geometric layout systems had to deal in some way
with the problem of default constraints. As discussed in Section 11, given
a collection of geometric objects with constraints on them, if a part is
moved, in general there are many ways to readjust the objects so that the
constraints are satisfied. For example, if we move one endpoint of a horizon-
tal line, we don’t expect that it will suddenly triple in length (even though
the constraint that it be horizontal would still be satisfied). In Sketchpad,
the old z and y locations of points are the starting values for the iterative
relaxation routine. Even when using local propagation, Sketchpad would
solve for values using an individual constraint by considering the constraint
error and finding a new value that would make the error go to zero. Thus,
if one views the old values as “stay” constraints, and the user’s input as a
required constraint, Sketchpad would find a locally-metric-better solution to
the constraints. If only relaxation were used and not local propagation, the
solution would also be close to a least-squares-better solution. Sketchpad
also supported read-only annotations on variables (Sutherland called them
“reference-only variables”). Sutherland notes that misusing reference-only
variables can lead to instabilities in the relaxation algorithm.

The original version of ThingLab followed Sketchpad’s lead, and added
local propagation methods to constraints, and constraints over arbitrary
domains (not just the real numbers). All the explicit constraints were re-
quired; the user’s edit requests were implicitly treated as strong preferences
rather than requirements, so that if the edit conflicted with a required con-
straint, the user’s constraint would be overridden. In addition, there were
implicit weak or very weak constraints that parts of an object keep their
old values as the object was being manipulated by the user, unless it was
necessary for them to change to satisfy the user’s edit or the explicit re-
quired constraints. Some of these implicit weak constraints needed to be
stronger than others to achieve intuitive behavior. For example, suppose
that we have a simple graphical calculator, which includes a constraint
A+ B = (. Now suppose the user edits the value of A. We expect that the
system will re-satisfy the plus constraint by changing (', rather than by
changing B. To achieve this, the local propagation methods of a constraint
were ordered to indicate which ones should be used in preference to others.
(For A4+ B = C, the method for updating C' would be listed first.) This

(usually) gave the same effect as making the stay constraint on C' weaker
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than the ones on A and B. Also, the user’s input—for example, moving
something with the mouse—was considered as a preference rather than a
requirement, so that an anchor or constant could cause it to be overridden.
Thus ThingLab would usually also find a locally-metric-better solution.

Neither Sketchpad nor ThingLab used a separate, declarative theory of
constraints; these choices were embedded in the procedural code of the
constraint satisfier. This situation became increasingly troublesome when
we tried to improve on Thinglab’s constraint satisfier, since there was no
declarative specification that we could use to decide whether a particular
optimization would lead to a correct answer. In response, the constraint
hierarchy theory described in this paper was developed, and was used in
later versions of the system.

Similar considerations obtain for the other interactive geometric layout
systems. In Magritte [33], the system performed a breadth-first search to
change as few variables as possible. This often gives similar answers to
unsatisfied-count-better, but without too much trouble one can come up
with problems where it doesn’t give a reasonable answer. For example,
consider the constraint X7 + ...+ X,, = Swum, which is represented as a
chain of three-argument plus constraints. If X; is changed, the breadth-
first search solution would be to update either X;_; or X;y1; but the user
might well intend that plus have its normal directional bias, so that Sum
would be updated instead. Constraint hierarchies allow either of these
solutions to be preferred by suitable choice of comparator and strength of
the stays. Vander Zanden’s algorithm [82] uses a heuristic that attempts to
minimize the number of equations that must be solved; again, this is related
to unsatisfied-count-better, but the exact choice is embedded procedurally
in the satisfier.

62 Spreadsheets and Related Systems

Spreadsheets, such as Lotus 1-2-3 or Microsoft EXCEL, are constraint
systems in that the user specifies relations to hold between values in cells,
although these constraints are usually unidirectional. Spreadsheets in ef-
fect trivially implement stay constraints on unedited cells by their update
algorithm. The most recent spreadsheet implementations include built-in
solver and optimization packages, and thus have much of the power of the
other constraint systems. TK!Solver [44] is a commercially available system
that uses constraints in a “general purpose problem solving environment”
targeted at mechanical and electrical engineers. It uses local propagation
and relaxation as solution techniques, but when relaxation is required, it
asks the user to make initial guesses of the variable’s values, thus greatly
improving the chances of convergence.
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63 User Interface Toolkits

Another frequent application of constraints is in user interface toolkits,
where they are used for such tasks as maintaining consistency between
underlying data and a graphical depiction of that data, maintaining consis-
tency among multiple views, specifying formatting requirements and pref-
erences, and specifying animation events and attributes. The constraint-
based user interface system with the largest user base is Garnet [57, 56].
This system is a full-fledged user interface construction set, written in
Common Lisp, which provides considerable functionality beyond just a
constraint system. The standard constraint portion of Garnet supports
only unidirectional constraints and not multidirectional ones, but does in-
clude support for constraints containing arbitrary pointer variables [81].
We recently extended Garnet to Multi-Garnet, which supports multi-way
constraints, constraint hierarchies, and pointer variables in an integrated
framework [63]. A precursor to Garnet is the Peridot system [54, 55]; an in-
teresting feature of Peridot is its mechanism for inferring constraints from
a widget’s layout. Reference [9] discusses the design of a syntax-based
program editor using constraints. References [10] and [17] describe using
constraint hierarchies to define the inter- and intra-window relations in a
window system. Other user interface toolkits that use constraints include
GROW [1], MEL [34], GITS [60], the FilterBrowser user interface construc-
tion tool [16], and the Cactus statistics exploration environment [52].

64 General-Purpose Programming Languages

A number of researchers have investigated general-purpose languages
that use constraints, in addition to those mentioned in Section A. Steele’s
Ph.D. dissertation [74] is one of the first such efforts. Leler [46] describes
Bertrand, a constraint language based on augmented term rewriting. Both
Steele and Leler’s languages use the refinement rather than the perturba-
tion model and don’t deal with the issues of soft constraints or the stability
of an existing solution when editing it. (Steele’s implementation maintains
dependency information to decide which deductions should be invalidated
when editing the constraint graph, as well as to aid in generating explana-
tions. However, when such edits are made, the old values are simply erased,
rather than being used as defaults for the new values.) Siri [36, 37] and
RENDEZVOUS [35] are other recent languages that combine constraints
with imperative programming. Siri uses a graph rewriting model of ex-
ecution, derived from Bertrand’s. Unlike Kaleidoscope, Siri requires the
programmer to state explicitly which parts of an object remain the same
after a change. In addition, Siri uses a single abstraction mechanism, a con-
straint pattern, for object description, modification, and evaluation, rather
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than separate mechanisms for these tasks. (This uniform use of patterns
is derived from BETA [45].) RENDEZVOUS includes extensive support
for processes and multiple users; its intended domain of use is multi-user,
multi-media systems.

Much of the recent research on general-purpose languages with con-
straints has used logic programming as a base. Several instances of the CLP
scheme (see Section 52) have now been implemented, including CLP(R)
[41, 42], Prolog III [12], CHIP [14, 78], CAL [68], and CLP(X*) [84]. The
cc family of languages [66, 65] generalizes the CLP scheme to include such
features as concurrency, atomic tell, and blocking ask. Work on logic pro-
gramming and constraint hierarchies other than HCLP includes that of
Maher and Stuckey [49], who give a definition of constraint hierarchies
similar to the one in this paper. In their definition, pre-solutions for hier-
archies perform the same function as the set Sy in our formulation. Ma-
her and Stuckey define a pre-measure that maps pre-solutions and sets of
constraints to some scale, so that they can then be compared via a lexi-
cographic ordering. Satoh [67] proposes a theory for constraint hierarchies
using a meta-language to specify an ordering on the interpretations that
satisfy the required constraints. The theory is quite general, and can ac-
commodate all of the comparators described in Section 21. However, since
it is defined by second-order formulae, it is not in general computable. In
subsequent work [69, 70], Satoh and Aiba present an alternative theory
that restricts the constraints to a single domain D, so that they can be ex-
pressed in a first-order formula. This theory is similar to the one presented
here, with the following differences: first, only the locally-predicate-better
comparator is supported; second, the semantics of constraint hierarchies is
described model theoretically rather than set theoretically; and third, the
class of constraints is generalized from atomic constraints to disjunctions of
conjunctions of atomic constraints. Satoh and Aiba embed such constraints

in the CLP language CAL [68], to yield an HCLP language CHAL [69, 70].

Ohwada and Mizoguchi [59] discuss the use of logic programming for
building graphical user interfaces, including the use of default constraints.
Their constraint hierarchy is implemented using the negation-as-failure
rule, i.e., if the negation of a constraint is not known to hold, then the
constraint can be assumed to hold. A problem with this approach is that
it then becomes necessary to list all possible conflicts when a rule is being
written in order to avoid inconsistencies. In contrast, in HCLP the need
for consistency is assumed and there is no need to enumerate specifically
those constraints that might conflict with the goal.
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65 Artificial Intelligence Applications

There is a substantial body of research in the artificial intelligence com-
munity using constraints in planning, simulation, computer vision, and
other areas. Constraints can, for example, improve the performance of an
inferencing system by early pruning of the search space, i.e., by using the
constraint system as a faster, but less general, inferencer that runs as a sub-
task of the more general system. Again, since this body of related work is
very large, here we concentrate on work involving combinations of required
and preferential constraints.

Descotte and Latombe [13] use required and preferential constraints in a
system, Gari, for generating plans for machining parts. For example, there
might be a required constraint that a particular cut be made with either a
surface grinding machine or a lathe, and a preference that such cuts not be
made with a lathe. Production rules are used to encode Gari’s knowledge:
on the left hand side of the rule are conditions that must be satisfied for
the rule to be used; on the right hand side are labeled constraints that
are added if the rule’s conditions are satisfied. Gari supports ten levels of
constraints (required and nine preferential levels). The solver finds (close
to) a locally-predicate-better solution to the collection of constraints using
an iterative search.® Fox [18] discusses the problem of constraint-directed
reasoning for job-shop scheduling, and allows the relaxation of constraints
when conflicts occur, as well as context-sensitive selection and weighted in-
terpretation of constraints. In Fox’s system, ISIS, non-required constraints
include a relazation specification that specifies procedurally how to generate
alternative, less restrictive, versions of the constraint. ISIS searches for a
solution to the soft constraints that meets a minimum weighted-sum-better
threshold. (Due to the complexity of the search space for this domain,
the system doesn’t attempt to find an optimal solution, just an acceptable
one.) Constraints in ISIS have a number of other attributes, such as du-
ration and context, which in the formalism described in this paper would
be handled outside the constraint system (for example, in HCLP rules or a
Kaleidoscope procedure).

The constraint systems in many Al applications solve systems of con-
straints over finite domains [47]. Three typical applications of such CSPs
(constraint satisfaction problems) are scene labeling, map interpretation,
and computer system configuration. Freuder [30] gives a general model for

®The definition of a correct solution in Gari is actually a bit weaker than locally-
predicate-better: in the terminology used in this paper, a Gari solution must simply
respect the hierarchy (see Section 21). Equivalently, one can view Gari as using a two-
level constraint hierarchy (required and one preferential level), with integral weights
between 1 and 9 on the preferential constraints; taking this view, it finds worst-case-
better solutions.
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partial constraint satisfaction problems (PCSPs) for variables ranging over
finite domains, extending the standard CSP model. In Freuder’s model,
alternate CSPs are compared with the original problem using a metric on
the problem space (as opposed to a metric on the solution space, as in our
work). An optimal solution s to the original PCSP would be one in which
the distance between the original problem and the new problem (for which
s is an exact solution) is minimal. In an earlier CSP extension, Shapiro
and Haralick [72] define the concepts of exact and inexact matching of
two structural descriptions of objects, and show that inexact matching is a
special case of the inexact consistent labeling problem.

A classic problem in Al is the frame problem: the need to infer that state
will not change across events.? In response to this problem, a substantial
body of research has been done on nonmonotonic reasoning; reference [32] is
a collection of many of the classic papers in the area. Brewka [8] describes
an approach to representing default information with multiple levels of
preference. In this framework, there are many levels of theories, some of
which are more preferred than others. A preferred subtheory is obtained
by taking a maximally consistent subset of the strongest level, and then
adding as many formulas as possible from the next strongest level, and so
on, without introducing any inconsistencies. Reference [86] discusses some
additional aspects of the relationship between constraint hierarchies and
nonmonotonic logic.

7. Conclusion

The primary contribution of this paper has been a complete presentation
of the theory of constraint hierarchies: both the basic form, and a number
of useful extensions. We have also outlined a number of applications and
algorithms to demonstrate that constraint hierarchies are useful and prac-
tical, and have shown how the operation of a number of other systems can
be categorized using the constraint hierarchy theory.

We are continuing to investigate various aspects of constraint hierarchies,
including fully integrated programming languages and additional solver al-
gorithms. One of our primary goals in this work is to support user interfaces
and interactive graphics, both of which require highly efficient constraint
solvers. Thus, with Michael Sannella, we are extending the DeltaBlue al-
gorithm to accommodate cycles, simultaneous equations, and other com-
plex constraint graphs. Additionally, we believe that there are significant
benefits that arise when constraint hierarchies are fully integrated into pro-

*The use of weak stay constraints to assert that parts of a graphical object being
manipulated should remain in the same place is in fact a way of addressing the frame
problem in the context of interactive graphics.
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gramming languages. Thus we are further refining our second HCLP(R)
implementation and, with Gus Lopez, are implementing a second genera-
tion CIP language, Kaleidoscope’91.
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